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Quiz

1) Massive Star Formation

Which of the following statements about massive star formation is true? (multiple selections 
possible)

1. Massive Stars are rare.

2. The closest site of massive star formation is many thousand parsec away.

3. Massive stars can form from any molecular cloud.

4. Massive stars form only from very dense molecular clouds.

5. The majority of newly formed stars has masses above 5 M⊙.

6. Massive stars produce the majority of the stellar light.

7. Most of the stellar mass is bound in low-mass stars.

8. Low- and high mass stars form similarly.

9. Massive stars always form in multiple (binary, ...) systems.

Solution

1. Massive Stars are rare. - TRUE

2. The closest site of massive star formation is many thousand parsec away. - FALSE: The Orion 
nebula is an active site of massive star formation and its distance is 413 pc. 

3. Massive stars can form from any molecular cloud. - FALSE

4. Massive stars form only from very dense molecular clouds. - TRUE

5. The majority of newly formed stars has masses above 5 M⊙. - FALSE: Given the observed IMF, the 
number of stars is dominated by the low masses. - 

6. Massive stars produce the majority of the stellar light. - TRUE: Given the observed IMF, the 
luminosity is strongly dominated by the high masses.



7. Most of the stellar mass is bound in low-mass stars. - TRUE: the lower masses dominate the total 
mass in a stellar population.

8. Low- and high mass stars form similarly. - FALSE (see lecture)

9. Massive stars always form in multiple (binary, ...) systems. - FALSE: Most of the massive stars 
occur in multiple systems but not all.

2) Observations of massive star formation

Observing massive star formation is complicated or assisted by (select the TRUE facts):

1. Massive star formation only takes place in the Milky Way plane and therefore suffers from strong 
dust attenuation.

2. Massive star formation only happens in the Milky Way halo and is therefore easy to observe.

3. Massive star formation only takes place in star burst galaxies which are very distant.

4. Massive star formation is much faster than regular star formation which makes it difficult 
statistically to observe active star formation.

5. Massive stars form and enter the ZAMS while they are still accreting and are still embedded in the 
dusty envelope.

6. Strong stellar winds during the massive star formation blur observations and confuse the 
detectors.

7. Massive star formation in molecular clumps happens deeply embedded with high magnitudes of 
visual extinction AV.

8. Massive star formation in molecular clumps has no preferred spatial distribution and can happen 
everywhere.

9. Massive star formation and emission of ionized Hydrogen (HII regions) are always observed 
together.

Worked Example: HII Region Trapping
Consider a star of radius R* and mass M* with ionizing luminosity S photons s-1 at the center of a 
molecular cloud. For the purposes of this problem, assume that the ionized gas has constant sound 
speed ci = 10 km s-1 and case B recombination coefficient αB = 2.6×10-13 cm-3 s-1. 

a)

Suppose the cloud is accreting onto the star at a constant rate M

*. The incoming gas arrives at the 

free-fall velocity, and the accretion flow is spherical. Compute the equilibrium radius ri of the 
ionized region, and show that there is a critical value of  M


* below which ri >> R*.  Estimate this 

value numerically for M* = 30M⊙ and S = 1049 s-1. How does this compare to typical accretion rates 
for massive stars?

The density profile of the accretion flow is given implicitly by

M

* = 4π r2 ρ vff (1)
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where vff = 2GM* /r . Thus we have

ρ =
M

*

4π 2GM*

r-3/2
(2)

Recombinations happen in the region between R* and ri. The recombination rate per unit volume is 
αB ne np = 1.1αB(ρ /μH)2, where μH = 2.3×10-24 g  g is the mass per H nucleus assuming standard 
composition. Thus the total recombination rate within the ionized volume is

Γ = 
R*

ri
4π r2(1.1αB)

M

*

4π 2GM*

r-3/2
2

ⅆr =
1.1αB M


*

2

8π μH
2 GM*

ln
ri

R*
(3)

Since this must equal the ionizing photon production rate (Γ = S), we can solve for ri:

ri = R* exp
8π μH

2 GM*

1.1αB M

*

2 (4)

The condition that ri >> R* is satisfied if the term inside parentheses is ≳ 1, which in turn requires

M

* ≲

8π μH
2 GM* S

1.1αB

1/2

(5)

Plugging in the given values M* = 30M⊙ and S = 1049 s-1,we obtain 

8 π 2.3×10-24
2
6.67×10-8×30*2×1033×1049

1.1×2.6×10-13

1/2

= 4.313236696179393`*^21 g s-1

In[ ]:=

4.313236696179393`*^21

2×1033
*π 107

Out[ ]= 0.0000677522

M

* ≲ 0.7 × 10-5 M⊙ yr-1  (π 107 is about s yr-1). This is lower (though not by a huge amount) than the 

typical accretion rates inferred for massive stars.

b)

The H ii region will remain trapped by the accretion flow as long as the ionized gas sound speed is 
less than the escape velocity at the edge of the ionized region. What accretion rate is required to 
guarantee this? Again, estimate this numerically for the values given above.

The escape velocity at a distance r from the star is vesc = 2GM* /r . Thus the condition that 

vesc < ci at ri implies that
2GM*

ci
2

< ri = R* exp
8π μH

2 GM*

1.1αB M

*

2 (6)

Solving for M

*, we find

M

* > 

8π μH
2 GM* S

2.2αB ln(vesc,* /ci)


1/2
(7)

where vesc = 2GM* /R*  is the escape speed from the stellar surface. Using R* = 7.7R⊙ (the radius 

of a 30M⊙ ZAMS star) and plugging in the other input values gives 

assuming ci = 106 cm /s = 10 km /s
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In[ ]:= vesc = 2×6.67×10-8×30*2×10337.7×6.96×1010

Out[ ]= 1.22209 × 108

In[ ]:=

8 π 2.3×10-24
2
6.67×10-8×30*2×1033×1049

2.2×2.6×10-13 Log vesc
106



π 107

2×1033

Out[ ]= 0.0000218539

gives M

* ≲ 2.2 × 10-5 M⊙ yr

-1.

Problem 2: Rosseland Opacity
The aim is to calculate a mean opacity in the case of (the frequency dependent) free-free absorp-
tion in pure hydrogen.  

The Rosseland mean opacity 1
κ

 is a weighted mean opacity with the weighting  ∂Bν
∂T

:

1

κ
=
∫

1
κν

∂Bν
∂T

ⅆν

∫
∂Bν
∂T

ⅆν
(8)

Particularly, strong weight is given to those frequencies, where the radiation flux is large. The 
frequency-dependent opacity is given by the expression:

κν ρ = 1.32×1056
ρ2 gff

ν3 T1/2
1 - ⅇ-hν/k T cm-1 (9)

where gff is a constant quantum mechanical correction factor called the Gaunt factor.

a) ∂Bν /∂T

The Planck function is 

Bν =
2 h ν3

c2

1

ⅇhν/k T - 1
(10)

First derive an expression for ∂Bν /∂T.

Solution

Bν =
2 h ν3

c2

1

ⅇhν/k T - 1
(11)

B[ν_] :=
2 h ν3

c2

1

ⅇh ν/(k T) - 1

Dt
2 h ν3

c2

1

ⅇh ν/(k T) - 1
, T, Constants → {h, c, k, ν} // Simplify

2 ⅇ
h ν

k T h2 ν4

c2 -1 + ⅇ
h ν

k T

2

k T2
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b) 

Next, introduce a dimensionless variable x = hν /k T and eliminate ν from ∂Bν /∂T.

Solution

% /. 
h ν

k T
→ x

2 ⅇx h2 ν4

c2 -1 + ⅇx2 k T2

% /. 
h2 ν4

k T2
→

x4 T2 k3

h2


2 ⅇx k3 T2 x4

c2 -1 + ⅇx2 h2

c) 

Starting from equation (9), derive an expression for 1
ρκν

∂Bν /∂T and plot the resulting function. Use 

the plot to argue that the Rosseland mean opacity is largely determined by κν when the frequency 
is a few times k T /h.

Solution

κν ρ = 1.32×1056
ρ2 gff

ν3 T1/2
1 - ⅇ-hν/k T cm-1 (12)

κν ρ = 1.32×1056
ρ2 h3 gff

k3 T7/2

(1 - ⅇ-x)

x3
cm-1 (13)

1

κν ρ

∂Bν

∂T
=

1

1.32×1056 ρ2 h3 gff

k3 T7/2
(1-ⅇ-x)
x3

2 k3 T2

h2 c2

x4 ⅇx

(ⅇx - 1)2 (14)

1

κν ρ

∂Bν

∂T
=

2 k6 T11/2

1.32×1056 ρ2 h5 c2 gff

x7 ⅇx

(ⅇx - 1)2 (1 - ⅇ-x)
(15)

1

κν ρ

∂Bν

∂T
=

2 k6 T11/2

1.32×1056 ρ2 h5 c2 gff

x7 ⅇ2 x

(ⅇx - 1)3
(16)
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Plot
x7 ⅇ2 x

ⅇx - 13
, {x, 0, 10}
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We see that the largest contribution comes from x~7, or ν~7 k T
h

.

d) 

Show that the Rosseland mean opacity (equation (8)) for free-free absorption obeys Kramers law 
where κ ∝ ρ T-3.5.

Solution

1

κ
=
∫

1
κν

∂Bν
∂T

ⅆν

∫
∂Bν
∂T

ⅆν
(17)

∝
T11/2 ρ-1

T2

∫
x7 ⅇ2 x

(ⅇx-1)3 ⅆν

∫
x4 ⅇx

(ⅇx-1)2 ⅆν
=
T13/2 ρ-1

T3

∫
x7 ⅇ2 x

(ⅇx-1)3 ⅆν

∫
x4 ⅇx

(ⅇx-1)2 ⅆν
(18)

1

κ
∝
T13/2 ρ-1

T6/2
∝ T7/2 ρ-1 (19)

Magnetic Torque in a thin disk
Derive an estimate of the torque acting on a geometrically thin accretion disc due  to a dipolar 
magnetic field that originates in a rotating central star. Assume that the disc has an inner edge 
located away from the star at radius Rmin.

The estimate of the total torque exerted on the inner part of the accretion disc by the magnetic field 
is

 =
4 π

3

Bz
2 (R*)

μ0

R*
6

Rmin
3

(20)

where Bz(R*) is the component of the magnetic flux density in the direction perpendicular to the 
disc at the surface of the star, R* is the radius of the star, and μ0 is the permeability of free space.

By equating this magnetic torque to the internal viscous torque acting at the inner radius Rmin, 
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derive an expression for the inner radius of an accretion disc that is truncated by the stellar mag-
netic field.

The inner radius Rmin and the radius of the central star R* are related by

Rmin

R*
=

4 π Bz
2 (R*) R*

5/2

3 G m m

μ0

2/7

(21)

where m  is the mass flow rate through the disc, and M is the mass of the central star. G is the con-
stant of gravitation.

Consider a 1 M⊙ T Tauri star of radius R* = 1R⊙, with a magnetic field strength at its surface of   
Bz(R*) = 10-1 Tesla. If the star is accreting at a rate M


= 10-8 M⊙ yr-1, calculate the radius of the inner 

edge of the accretion disc.

Rmin

R*
= 50

Bz (R*)

Tesla

4/7 R*

R⊙

5/7 m


10-8 M⊙ yr
-1

-2/7 M

M⊙

-1/7

(22)

For the T Tauri star, putting M = 1M⊙, R* = 1R⊙, Bz(R*) = 10-1 Tesla, m = 10-8 M⊙ yr-1, we get an 
inner radius of the accretion disc

Rmin

R*
= 50 10-1

4/7
15/7 1-2/7 1-1/7 = 13.413478976398627`

= 13.4R⊙

One class of young stars, known as FU Orionis stars, are known to undergo outbursts in which the 
apparent accretion rate increases substantially above the canonical value of M


= 10-8 M⊙ yr-1. If the 

accretion rate during outburst increases by a factor of 104 above this value, then calculate the 
radius of the inner edge of the accretion disc using the above stellar parameters. What do you think 
happens to the magnetic field in this case ?

Rmin

R*
= 50 10-1

4/7
15/7 104

-2/7
1-1/7 = 0.9653488644416252`

This figure is actually smaller than the radius(R* = 1R⊙) used for the star itself.

In this case the magnetic field lines are swept in towards the star by the increased mass flow and 
are essentially crushed against the stellar surface. The configuration is now very different since a 
boundary layer is generated.
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